会员资源切换至【手机版】

切换本帖至【手机版】


开启左侧

[知识] 物理知识收集

  [复制链接]
 楼主| 发表于 2019-3-27 10:08:13 | 显示全部楼层

现代理论物理已经发展到多么令人震惊的水平了?


作者:Max Snow

链接:现代理论物理已经发展到多么令人震惊的水平了?

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

纵观整个物理学史,我认为真正令人震惊的不是公式变得有多复杂(地心说搞得也挺复杂的。。。),而是物理学已经越来越脱离直观了,甚至变得有些变态起来?

牛顿时期

老祖宗牛顿真是开了个好头啊,为了建立物理理论自己先搞出来了微积分,算是数学和物理结合的最初典范,简简单单的三个公式上能预测天体运动下能解释斜坡上的小滑块,真是让人不服不行。

牛顿力学的基本物理量是空间坐标x,时间t,质量m,还有能量,这几个量正常人都能很直观地理解是什么意思,在自然语言中也经常使用。

而且微积分这个东西直观性也非常好,想想我们解高数题的时候用到了很多形象思维,比如说我们可以把微分理解为小量,把积分理解为求和,仔细想想和初等数学差别不大。

后牛顿时期

牛顿之后就是统计力学,麦克斯韦电磁学,分析力学这些了。虽然这些理论一定程度上独立于牛顿力学,但是和牛顿力学没有根本世界观上的矛盾。而且这些理论需要的数学也不过就是初等数学+微积分。

其中电磁学的基本物理量是电场和磁场,统计力学引入了熵,热这些量,总的来说直观性还是杠杠的。而分析力学比较微妙,虽然理论体系和牛顿力学完全等价,但是却以拉格朗日量和哈密顿量为基本物理量,之所以定义这两个量完全出于数学上的考量,没有直观性。后来证明这兄弟俩在现代物理中发挥了极其重要的作用。

爱因斯坦时期

自从爱因斯坦降临于世,物理学就开始向变态的方向发展了。。。

在牛顿时期,是先有物理学的直观,然后才发展出了所需要的数学。而爱因斯坦时期恰恰相反,有一些之前数学家随便瞎玩的东西,本来没觉得和现实世界有任何关系,在这一时期却被引入了物理学,具体来说指的是微分流形,群论等。

狭义相对论告诉我们,时间空间地位相当,都是四维时空矢量的分量,切换惯性系实际上是在对四维时空进行旋转,我们可以类比三维旋转来理解。而动量,波矢,电磁场这些物理量都可以找到相应的四维协变形式。

广义相对论告诉我们,时空不是平坦的而是拧在一起的,我们之所以感觉是平坦的完全是因为我们周围没有密度特别大的东西所以时空弯曲效应不明显(当然这是在把地球造成的时空弯曲解释为引力的前提下说的),时间和空间第一次在物理学里发生了如此深刻的关联!真正描述时空的不是欧式几何而是黎曼几何(怒打康德脸)。总的来说,爱因斯坦用微分流形的语言取代了正常人对时空naive的理解,我们发现直观上想当然是对的东西不一定真是对的(如几何学里的平行线公理在现实世界就不对)。不过我们还是可以用可直观的二维三维空间弯曲来理解四维时空的弯曲。除了强调时空几何以外,相对论并没有比牛顿力学多引入任何基本物理量,只是把物理量整理成洛伦兹(Lorentz)协变的形式。

然后再说量子力学,尽管这家伙用到的数学没有广义相对论复杂,但真是太反直观了。

1. 它沿袭了分析力学里面哈密顿量,广义坐标的概念。

2. 牛顿力学里面用坐标和速度来描述一个粒子的状态,而量子力学不认为一个粒子有确定的坐标和速度,因此用波函数来表征粒子的状态,波函数的模方正是粒子的概率密度分布。除了坐标和动量以外,其他物理量也是概率性的。

3. 量子力学不认为物理量是个数,而是算符,或者说是线性代数里面的线性变换(Hermite),(所以公式里两个物理量的位置就不能像以前那样按照乘法交换律随意交换),代数第一次在物理学里面被提到这么高的地位!

4. 它用的线性代数还不是大多数本科生学的实数域上的线代,而是复数域上的。没错,量子力学基本方程薛定鄂方程里面含有虚数!和电动力学里那种为了计算方便而引入的虚数不同,量子力学理论本身就需要复数结构!看上去不可能有物理意义的虚数居然出现在基本方程里面,这是何等的疯狂!

量子场论时期

场论是现代物理的基本语言。其中基本物理量叫做场算符,包括标量场,矢量场和旋量场。自由标量场(Free theory)的定义为这样:

现代理论物理已经发展到多么令人震惊的水平了?

如果说量子力学里面的波函数还可以通过概率密度来建立直观,那现在这个场算符就真的一点直观都没有了(实际上应该理解为一大堆谐振子的叠加,但是这样想对我来说很难受,谁关心谐振子啊。。orz),这样定义的一个很大的好处是它在洛伦兹变换下的变换性质和普通的标量场一样。

学狭义相对论的时候我们一般把洛伦兹变换理解为一些固定的四维矩阵,但是场论里自旋(spin)的概念让我们认识到,真正最重要的不是那个洛伦兹矩阵,而是矩阵背后的Lie代数,或者说是洛伦兹群。那个矩阵只不过是Lorentz群的一个四维表示(representation)而已,而像旋量这种二维的东西是按照二维的表示进行变换的。试问在相对论性量子力学建立之前,无论是数学家还是普通人,谁能想到群论这种高度抽象的东西能和自然界有这么深刻的联系?

场论对何谓粒子的理解也是高度抽象的,不是我们平常脑子里想的一个个小球,我引用Schwartz教材里的话: Particles transform under irreducible unitary representations of the Poincare group. This statement can even be interpreted as the definition of what a particle is(粒子的行为由庞加莱群的不可约酉表示描写,这在某种意义上可视为对粒子的定义). 很多人总是好奇反粒子到底是啥东西,其实在场论里,对反粒子的定义也是纯粹抽象的,没人能直观地告诉你为啥存在反粒子。

另外,场论把对称性的重要性提到了前所未有的高度,一个拉格朗日量之所以是其所是的样子,通常就是出于对对称性(包括洛伦兹不变性)的考虑。很显然这是一个数学的理由而不是一个直观的理由。

再之后就是弦论,我暂时还不懂就不说了。

现代理论物理已经发展到多么令人震惊的水平了?

总结

可以说整个物理学史是有从直观向抽象发展的趋势的。数学和物理如此深度的统一,在物理学之外的任何自然科学,社会科学,工科,商科都不曾出现过,这就是理论物理对我来说最令人震惊的地方。基于这个原因,数学和物理的统一体在我心中是人类文明最闪耀的两颗巨星中的一颗。

来源:知乎

编辑:井上菌


主题推广




回复 支持 反对

使用道具 举报

 楼主| 发表于 2019-3-27 10:09:14 | 显示全部楼层

令人惊喜的联系:爱因斯坦和π

中科院物理所 2019-03-14 11:53:45
令人惊喜的联系:爱因斯坦和π

○ 图片来源:Charlie Powell

文章最后有彩蛋等着你哦~

每年的3月14日都是科学爱好者会庆祝的节日。首先,这一天是爱因斯坦的诞辰(140岁生日);再者,它是圆周率日,因为3.14是我们的历法中最近似圆周率π的十进制展开(π= 3.1415927……)。

无论是爱因斯坦还是圆周率,都在科学和数学中扮演着重要的角色。但这两者之间还有更紧密的联系吗?

当然有,我们只要看看爱因斯坦的方程就知道了。这里,我指的是“真正的“爱因斯坦方程,而不是众所周知的E=mc²(就其本身而言,这是狭义相对论的一个非常简单的结果,而不是一个基础关系式)。所谓的真正的爱因斯坦方程,是你在任何一本好的广义相对论教材的索引中寻找“爱因斯坦方程”时,都会找到的那个。它是连接了时空曲率与能量源的场方程,是广义相对论的核心方程。它看起来是这样的:

令人惊喜的联系:爱因斯坦和π

如果不熟悉这些符号,你可能会被这个方程吓到,但从概念上看它是非常简单的;如果你不知道这些符号,可以把它想象成一首外语小诗。它是这样说的:

(引力)=8πG×(能量与动量)

没那么可怕,对吧?引力的大小正比于能量和动量的大小,比例常数是8πG,G是一个数值常数。

诶?!π在这里做什么?似乎有点莫名其妙。爱因斯坦明明可以定义一个新的常数H,然后让H = 8πG,如此不就会得到一个更简洁的方程吗?难道他对π有某种特殊的爱,比如因为这是他的生日?

真实的故事没有这么异想天开,但更加有趣。爱因斯坦之所以不想发明一个新的常数,是因为G已经存在了,它是牛顿的万有引力常数,因此这很合理。虽然广义相对论取代了牛顿的万有引力理论,但说到底它仍然是引力,而且它的强度也和之前一样。

所以真正的问题是,为什么当我们从牛顿引力过渡到广义相对论时,会出现一个π?

我们来看看牛顿引力方程,也就是著名的平方反比定律:

令人惊喜的联系:爱因斯坦和π

其实它的结构与爱因斯坦方程类似:左边是两个物体之间的引力,在右边我们能找到这两个物体的质量m₁和m₂,以及万有引力常数G。(对牛顿来说,质量是引力的来源;而爱因斯坦发现,质量只是能量的一种形式,他将引力的来源升级为所有形式的能量和动量。)当然,我们还要除以两个物体之间距离r的平方。不过在整个公式中,π都没有出现。

这是物理学中一个很伟大的方程,也是科学史上最具影响力的方程之一。但它也有令人困惑之处,至少在哲学上是这样。它讲述了一个有关于超距作用的故事——两个物体在没有任何中介物质的情况下,在很远的地方相互施加引力。牛顿本人认为这是一种不可接受的状态,尽管他并没能给出一个很好的答案:

引力对物质来说应该是天然、固有且基本的,以至于一个物体可能在没有任何中介物质的情况下,穿过真空中的一段距离对另一个物体施力。通过这段距离,它们的作用和力或许可以从一个传到另一个。对我来说这是一个巨大的荒谬,我相信没有一个有哲学思辨能力的教职人员能信服于此。

但是有一个方法可以解决这个难题。那就是将重点从引力(F)转向引力势场(Φ),力可以从引力势场推导出。空间中充满了引力势场,每一个点都有其特有的值。在质量为M的单个物体附近,引力势场由以下式子给出:

令人惊喜的联系:爱因斯坦和π

这个方程与最初的牛顿方程很相似。它与距离成反比,而不是反比于距离的平方,因为它并不直接是引力;我们可以从场的导数(斜率)得出力,而求导则会把1/r变成1/r²。

这很好,因为我们已经用填满了整个空间的场,这样一个令人舒心的机械概念取代了奇异的远距离行为。虽然我们仍然没有看到π。

但是这个方程只告诉我们,当有一个质量为M的物体时会发生什么。如果有很多个物体,每个物体都有自己的引力场,或者在那个物体周围有气体或液体散布在那片区域,情况又会怎样?那么我们需要谈论质量密度,或者说单位体积的质量,通常用希腊字母ρ表示。确实有一个方程能把引力场和空间中任意的质量密度联系起来,它叫泊松方程:

令人惊喜的联系:爱因斯坦和π

在方程中,倒三角符号代表的是梯度算子(这里的平方则表示是拉普拉斯算子);这是一种用来描述场在空间中如何变化的奇特的三维方式(它的矢量导数)。但更有趣的是,在方程右边出现了一个π!这是怎么回事?

当然,它有一个很技术性的数学解释,但也有一个粗略的物理解释。而在牛顿方程或引力势场方程中,我们最初关注的是一个物体在距离r上的引力效应,现在我们要把宇宙中所有的效应都累积起来。那么这个“累加”(也就是积分)过程可以分为两个步骤:1.将所有离某固定点距离为r的位置的效应相加;2.将所有距离的效应相加。在第一步中,所有距离某个固定位置r的点,定义了一个以该位置为中心的球体。所以我们实际上是将沿着一个球面的效应累加起来。而球面面积的公式是:

令人惊喜的联系:爱因斯坦和π

这看起来几乎太显而易见,但这就是答案。π之所以出现在泊松方程而不是牛顿方程的原因是,牛顿关心的是两个特定对象之间的力,而泊松告诉我们要如何计算引力势作为传播到各处的关于物质密度的函数。而且在三维空间中,“各处”指的是“在一个球体上的所有面积”,然后“对每个球体进行相加”。(我们将球体相加,而不是立方体或别的东西,因为球体描述的是从某点出发的固定距离,而引力取决于距离。)而一个球体的面积与圆的周长一样,也正比于π。

令人惊喜的联系:爱因斯坦和π

那么爱因斯坦呢?回到牛顿引力的时代,通常使用引力势场是很方便的选择,但实际上并没有必要;理论上我们总是可以直接计算引力。但当爱因斯坦提出广义相对论时,场的概念成为绝对核心。我们计算的不是引力(事实上,在广义相对论中,引力并不是一个真正的“力”),而是时空的几何。它是由度规张量场固定的,是一个包括我们称之为引力势场的子集的复杂野兽。与爱因斯坦的方程直接类似的是泊松方程,而不是牛顿方程。

这就是爱因斯坦与圆周率的关系。爱因斯坦发现场能最好地描述引力,而不是将引力视作为个体之间的直接相互作用,将场与局部的物体相连涉及到球体表面的积分,而球体的表面积又正比于π。而他又恰好在这天生日,更是一个快乐的意外。

撰文:Sean Carroll

翻译:萌大统领

本文经Sean Carroll授权翻译,原文链接:

http://www.preposterousuniverse.com/blog/2014/03/13/einstein-and-pi/

来源:原理

令人惊喜的联系:爱因斯坦和π令人惊喜的联系:爱因斯坦和π

彩蛋来袭

今天3月14日,是科学家爱因斯坦140周年的诞辰,值此重要的日子,我们特给大家准备了精美礼物。

令人惊喜的联系:爱因斯坦和π

《物理学的进化》是美国科学家、物理学奠基人阿尔伯特·爱因斯坦和波兰物理科学家利奥波德•英费尔德合著的科普读物。这是世界科学史上普及科学思维的代表之作,作为相对论的创始人,爱因斯坦亲自科普相对论和量子论,无人可以代替。

书中介绍物理学观念从伽利略、牛顿时代的经典理论发展到现代的相对论、量子论和场论的演变情况。其中选择了几个主要的转折点来阐明经典物理学的命运和现代物理学中建立新观念的动机所在,从而引导读者怎样去找寻观念世界和现象世界的联系。全书分为四章:机械观的兴起;机械观的衰落;场、相对论;量子。全书没有引用数学公式,文字通俗易懂、举例浅显,编写体裁别开生面,是一本生动有趣的科普书籍。

回复 支持 反对

使用道具 举报

 楼主| 发表于 2019-3-27 10:41:30 | 显示全部楼层


熵:名字古怪性乖张


http://www.amitufo.net/bbs/forum.php?mod=viewthread&tid=50208&fromuid=1 (出处: BOOKS我1,下载FIRST!)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2019-3-27 10:42:12 | 显示全部楼层


破解困扰物理学家35年的夸克之谜


http://www.amitufo.net/bbs/forum.php?mod=viewthread&tid=50210&fromuid=1 (出处: BOOKS我1,下载FIRST!)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2019-3-27 10:44:28 | 显示全部楼层


dB到底是个啥?这个毫不起眼的单位,撑起了通信大厦的基石


http://www.amitufo.net/bbs/forum.php?mod=viewthread&tid=50215&fromuid=1 (出处: BOOKS我1,下载FIRST!)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

切换至【手机版】|主站|Archiver|Amituforum 无量觉社区

JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!

|网站地图

GMT+8, 2026-2-4 13:44 , Processed in 0.271807 second(s), 11 queries , Redis On.

Powered by amitufo

© 一时

快速回复 返回顶部 返回列表